- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Buxbaum, Sam (2)
-
Varia, Mayank (2)
-
Baum, Eli (1)
-
Boschelli, Lucas (1)
-
Christenson, Dino P (1)
-
Comarela, Giovanni (1)
-
Crovella, Mark (1)
-
Faisal, Muhammad (1)
-
Kalavri, Vasiliki (1)
-
Liagouris, John (1)
-
Seow, Ethan (1)
-
Tassis, Lucas M (1)
-
Tong, Yan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a real-world deployment of secure multiparty computation to predict political preference from private web browsing data. To estimate aggregate preferences for the 2024 U.S. presidential election candidates, we collect and analyze secret-shared data from nearly 8000 users from August 2024 through February 2025, with over 2000 daily active users sustained throughout the bulk of the survey. The use of MPC allows us to compute over sensitive web browsing data that users would otherwise be more hesitant to provide. We collect data using a custom-built Chrome browser extension and perform our analysis using the CrypTen MPC library. To our knowledge, we provide the first implementation under MPC of a model for the learning from label proportions (LLP) problem in machine learning, which allows us to train on unlabeled web browsing data using publicly available polling and election results as the ground truth.more » « lessFree, publicly-accessible full text available December 4, 2026
-
Seow, Ethan; Tong, Yan; Baum, Eli; Buxbaum, Sam; Faisal, Muhammad; Liagouris, John; Kalavri, Vasiliki; Varia, Mayank (, ACM)
An official website of the United States government
